Genotoxicity of amorphous silica nanoparticles: Status and prospects
نویسندگان
چکیده
منابع مشابه
Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation
Amorphous silica nanoparticles (SiNPs) are being used in biomedical, pharmaceutical, and many other industrial applications entailing human exposure. However, their potential vascular and systemic pathophysiologic effects are not fully understood. Here, we investigated the acute (24 hours) systemic toxicity of intraperitoneally administered 50 nm and 500 nm SiNPs in mice (0.5 mg/kg). Both sizes...
متن کاملDifferential proteomics highlights macrophage-specific responses to amorphous silica nanoparticles.
The technological and economic benefits of engineered nanomaterials may be offset by their adverse effects on living organisms. One of the highly produced nanomaterials under such scrutiny is amorphous silica nanoparticles, which are known to have an appreciable, although reversible, inflammatory potential. This is due to their selective toxicity toward macrophages, and it is thus important to ...
متن کاملThe Phagocytosis and Toxicity of Amorphous Silica
BACKGROUND Inhalation of crystalline silica is known to cause an inflammatory reaction and chronic exposure leads to lung fibrosis and can progress into the disease, silicosis. Cultured macrophages bind crystalline silica particles, phagocytose them, and rapidly undergo apoptotic and necrotic death. The mechanism by which particles are bound and internalized and the reason particles are toxic i...
متن کاملProinflammatory Effects of Pyrogenic and Precipitated Amorphous Silica Nanoparticles in Innate Immunity Cells.
Amorphous silica nanoparticles (ASNP) can be synthetized via several processes, 2 of which are the thermal route (to yield pyrogenic silica) and the wet route from a solution containing silicate salts (to obtain precipitated, colloidal, mesoporous silica, or silica gel). Both methods of synthesis lead to ASNP that are applied as food additive (E551). Current food regulation does not require tha...
متن کاملThermal conductivity accumulation in amorphous silica and amorphous silicon
We predict the properties of the propagating and nonpropagating vibrational modes in amorphous silica (a-SiO2) and amorphous silicon (a-Si) and, from them, thermal conductivity accumulation functions. The calculations are performed using molecular dynamics simulations, lattice dynamics calculations, and theoretical models. For a-SiO2, the propagating modes contribute negligibly to thermal condu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanomedicine: Nanotechnology, Biology and Medicine
سال: 2019
ISSN: 1549-9634
DOI: 10.1016/j.nano.2018.11.013